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Preface

This report is the re6ord of a two-day workshop held at Purdue University on high-

performance symbolic computation. The title -Symbolic computation and supercomput-

erso reflects the interests of the participants, many of whom are practitioners of symbolic

computing on supercomputer-class machines. The goal of the workshop was to assess the

current state of affairs, and identify key issues requiring attention. The report is pri-

marily a compendium of the positions taken, recommendations made, and questions

rascd by the participants. <7 4. / ""4't. -,;;:.

The participants we,-: r-- "' -, - . -

John Aldag, Cray Research
Wayne Anderson, Los Alamos Laboratory
Dennis Arnon, Purdue University
Bobby Caviness, University cf Delaware
Jagdish Chandra, Army Research Office
Elizabeth Cuthill, David Taylor Naval Ship R&D Center
Alvin Despain, University of California, Berkeley
Robert Douglass, Los Alamos Laboratory
John Fitch, University of Bath, England
Daniel Friedman, Indiana University
Richard Gabriel, Stanford University
Jeffrey Greif, Inference Corporation
Martin Griss, Hewlett-Packard Laboratories
Malcolm Harrison, New York University
Christopher Haynes, Indiana University
Robert Kessler, University of Utah
Wayne Matson, Symbolics, Inc.
Donald Oxlcy, Texas Instruments
John Rice, Pur-uc University
Join Smit, Goodyear Aerospace Corporation
William Stockwell, Control Data Corporation
Paul Wang, Kent State University

I-

,.I. .. . . -
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1. INTRODUCTION.

This report is the record of a two-day workshop held -.! Purdue University on high per-

formance symbolic computation. Twenty-two persons, representing a cross-section of

universities and industry, participated in two days of discussions. We chose the title

'Symbolic computation and supercomputers' to emphasize the urgency of radical improve-

ments to current symbolic computation performance and availability levels. In the report

we attempt to convey the specific and detailed points made by individual participants, as

diverse and even contradictory as these sometimes are. Our lack of consensus on many

issues is testimony to the need for further clarification and study in this area.

There can be no doubt that high performance symbolic computation is needed today

and wil! be increasingly needed in the future. Symbolic computation is a cornerstone of

applied artificial intelligence, e-g. expert systems. DARPA's Strategic Computing initia-

tive [Agc83] assigns symbolic computation a prominent role, and says of it:

current applications in areas such as vision now require about three orders of mag-
nitude more processing than is now available. As future algorithms and applica-
tions are developed, even more computing power will be necessary. (p. 44)

Syr:mbIic computatinn is a large component of the 'knowledge information processing" of

the Fifth Gcneration project in Japan [Mot82], as is attention to superscale processors.

The following are some concrete examples of the need for higher performance; the

list could be leng hened indefinitely. Speech systems that speak too slowly need speeding

up. A program of Moravec [Mor35] guides a robot across a room containing obstacles;

currcntly !5 minutes of computation are required after each step to evaluate what the

robot's vision system now sees, and decide in which direction it should take its next step.

NASA plans the computation of 30,000 srherical harmonics for the gravi:y field of the

earth. Symbolic computations performed by sophisticated mail programs, e.g. parsing

source addresses, sorting messages into conversations, can be unacceptably slow. There

C - .' . . -. .. - ' •- " . -- • ." " "
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are many potential applications of combined numerical and symbolic computation waiting

to be pursued, in which the symbolic computation is the dominant cost (cf. Section 3.3

below). For example, one might generate the equations of motion for joints of robot

arms symbolically, then solve them numerically. Current supercomputers already make

the numerical component much less costly than formerly; a Similar improvement in the

symbolic component is both needed and thought to be possible.

In recent years, a number of supercomputers, e.g. CYBER-205, CRAY-!, Denelcor

HEP, and Goodyear MPP (Massively Parallel Processor), have been commercially pro-

duccd. In addition, design and con.:.uction are at an advanced stage on such machines

as the NYU Ultracomputer, the Stanford University/Livermore Laboratory S-1, and the

Columbia University NON-VON. For numerical problems, they have given dramatic,

often order of magnitude, performance improvements. A symbolic computation environ-

ment that delivers order of magnitude performance improvements over current levels

might be termed a 'symbolic supercomputer'. The question is - how to build one? There

is general agreement that very increased use of parallelism is hasic. However, while

today's supercomputers can deliver substantial speedups on many numerical problems,

and may perform well as symbolic processors (e.g. with a LISP implementation), they are

not 'symbolic supercomputers'. Their design has been driven by the requirements of vec-

tor processing for large-scale numerical computation.

It is the goal of this rcport to ccllcct ideas and information pertinent to (1) the

design of a 'symbolic supercomrrputer', and (2) the more effective use of existing super-

computers for symbolic computation. At least one participant did not support these

objectives; he believed that cost effectiveness of machines is the key issue, i.e. will

su.pcrcomputers (SI-lOM) or powerful personal computers ($1-30K) have the largest posi-

tive impact on society?
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'Symbolic computation' means different things to different people; we devote Sec-

tion 2 to its various aspccts and key features. We feel there is an urgent need for evolu-

tionary change in general-purpose programming languages for symbclic computation, as

we detail in Section 3. Section 4 takes up memory managcment, a crucial issue which will

become more complex and no less important as parallel systems evolve. The topic of Sec-

tion 5, system organization, may be introduced by a quote from the DARPA report

([AgeS3, p. 45): 'The symbolic processors of the future may well be z collection of speciai

components which are interconnected via a general hoSt computer or by high speed net-

works'. Some of us agree and some do not. Section 6 is concerned with the evaluation

of existing and new symbolic computation sitems, made increasingly necessary by their

:.-..fcratcn; we make specific methodological recommendations.

We remark that at least one participant felt that we should no: spend time arguing

architcectures or programming languages, but should characterize the specific algorithms

we would like speed up, and find out how to do so.

2. TIE N4ATURE OF SYMMOLIC COMPUTATION.

It is unlikcly that two persons will agree on a dcfinition of symbolic computation. We list.

a few possibilities.

(1) DARPA ([Agc83j, p. 44) says 'Symbolic proc.essing decls with non-numeric CILjec:s,

*c la:ionships between these obiects, and the ability to infer or deduce new information

with ",.c aid of programs which 'reason'.'

(2) Kzhr. tKah82] says :hat symbolic computing a-ises when we have 'objects' (e.g. pro-

grams. -rogramming languages, circuits) that we need to reason about. The objects arc

rc.,rcerntcd as 'structured collections of formulae in some wcll-dcfnr algebraic forma-

is-'_. Thc 'computer tools' needed to reason about the ob'jects are symbolic computation

and t torem-proving.
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(3) Buchberger (Buc83] defines symbolic computation as: %ai aspects of the a!gorithmic

treatment of symbolic ... objects, where symbolic objects include terms, formu!ae, pro-

grams, geometrical objects ....

(4) One participant's definition: symbolic computation is characterized by one or more of

(A) manipulation of several types of entities (symbols, numbers, sets expressions, lists,

rules), (B) application of the same high or low level function to diverse structured

objects, functional aggregates of such expressions, and recursive descent through expres-

sions performing operations of this type, (C) (in principle) unbounded memory use in

simplification or evaluation of subparts of a computation, (D) searches throu-h

(moderately sized) databases in which the matching operation may be complicated, (E)

diffcrent instructions applied to objects of different type or different objects of the same

t p (F) random memory references via pointers, (G) application of certain deterministic

mathematical processing, e.g arbitrary precision integer arithmetic, or greatest common

divisor calculation.

() Another participant's definition: Symbolic computation deals with applications that

may involve heuristic search, uses comparison of symbols as a basic operation (instead of

Coating point arithmetic, which is numerical computing, or integer arithmetic, which is

signal processing) dealing with certain typical data structures (e.g. semantic nets, frames,

Pro_-,ctors, etc) involving pattern matching and is very run time dynamic in storage

recqu:rcme nts and processing requirements.

(16) One participant observed that the equal presence of algorithms, and heuristic search

and pattern matchiing, seemed to be a characteristic feature of symbolic computation.

Anoh,er participant observed that not so long ago, symbolic computation mean: chief)

sNbo:;c mathematical computation, and this may still be one of the best paradigms.
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We think a good working definition of symbolic computation is: computation involv-

ing data and control structures which are irregular and unpredictable. In other words,

one expects to deal with objects of diverse types. This means, among other things, that if

one seeks parallelism, the computations which are to proceed in parallel may be quite

different. Pointers to the data structures, rather than the structures themselves, are

manipulated. From this arise many of the memory considerations discussed in Section 4.

For illustration, we give a list of fundamental examples of symbolic computation.

Some of the items are from [Agc83] and [Buc83].

(1) Searching.

(2) Comparing complex structures (pattern matching).

(3) Par'ing, parser generators, compilers.

(4) Unifcation algorithms and solution of term equations.

(5) Evaluation algorithms for logic programming, rewrite rule programming, and func-
tional programming.

(6) Automated theorem proving, in general and in special theories.

(7) Manipulation of abstract data type specifications.

(8) Critical-pair/completion algorithms.

(9) Software prototyping, i.e. rapid generation of possibly inefficient programs from
specifications.

(IL, Computer-aided program verification, program transformaticn, symbolic execution,
data fow analysis, and program optimization.

A) Symbolic mathematicaJ computation (computer algebra).

(12) Computer-aided instruction.

(13) Robot control.

(!I) Vision/scnsorv imitation.

3. LANGUAGES.

We are in agreement that there is an urgent need for evolutionary change in general-

purposc programming lpnguages for symbolic ccmputation. Specifically, we need: (1)

language features that provide the user with the needed lov, of expression for prob:ei,

solving (eg. data abstraction, functional abstraction, contro! abstraction). (2) language
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features that support efficient implementation on paralle (or other) machines. eg. protec-

tion of name space or elimination of side effects or cdr-coding or tricky storage allocation

schcmes. There was little agreement on the form this change should take.

3.1. LISP.

The following are statements by individual participants, which do not necessarily have

group consensus.

(1) LISP was a good thing, but the time is coming to leave it t_'T;nd. A massiv s

carrying it forward. It's not suitable for the parallel pro:-:.ing environ ..ni. It is

inherently sequential. This workshop should be careful not to allow LISP to be en-

tral topic.

(2) Anti-LISP talk. is unjustified. There are man-centuries of development already behind

LISP; can't throw that away. LISP has many uses, and there are many existing applica-

tions. LISP does support parallelism, and doesn't ignore data structures. LISP is -,iable

on supercomputers, but new implementations are needed. 'ile use of vector processing

capabilities in LISP implementations is a rich field awaitinge.,'-.,tion.

(3) The implementation of full LISP with closures is desirable; the question is whether

one can get the semantics of dcep binding without paying for it, i.e. make up for the loss

c' the expressibility permitted by FUNARG (see e.g. [Pads]1). Lexical scope rules are

i!so important. p

(4) The convergence of LICP and PROLOG is a very promis'ng future direction. Clo-

sures and continuations provide a way of implementing the convergence.

3.2. Symbolic computation languages.

We will use the generic term 'symbolic computation (SC) languaSes', except where scme

particular language is in questioa. There seemed to be agreement that symbolic
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computation languages can be classified as follows: (examples given in parentheses):

Functional Languages (LISP, Scheme - both with and without side-effccts).
Declarative languages (PROLOG and variants)
Ob'ect-oriented languages (Flavors, Smalltalk, Scheme)
Table manipulation languages (Database Query Languages).
Domain specific languages (IDEAL, APL)
Rule-based languages (OPS-5, EMYCIN)
String-processing languages (Snobol)
Set manipulation languages (SETL)

DARPA doesn't break up the world this way; rather it distinguishes languages as being

data-driven, control-driven, or demand-driven ([AgeS3], p. 47).

7-n-, fo!owing are statements of individual participants (which we reiterate do not neces-

sar-:: have group consensus).

may be desirable to have FRAGMA's in languages so that the programmer can

advise the compiler of explicit or implicit parallelism, or other pertinent information.

(2) Progar,ers may want the facilities from several of the above categories in the same

problem. In other wor;'s, programmers may warnt to combine several of the known

abs'raction facilities. It would be desirable for future symbolic computation languages to

-,-. .• his, bcaring in mind the risks of complicating implementation and ending up with

an overly complex, hard-to-use, language. Some efforts have already been made along

ese tines, e.g. POPLOG, LOGLISP, LISP in PROLOG.

.. c .. .camc.:al abstractions that nmust be made available, snecificalV "Erz:

funz:ons and cc.''iuatlins [Frir)].

La-.r:aze cons:-ucts Lor exploiting parallelism have not been extensively utilized to

-' :he symbolic computa:ion community. Initial experiments by Gabriel and Fitch,

C o'hers, look promi.ing and show some interesting performance characteristics.

r, .-. - *rans'orma:o:.n techniques are used by FORTRAN program restructurers to

r!:tC' -,ra..cusCM in &Cien:inc applications. The languages used in symbelic computation

.. ii. . - . . " ". "- - -. -"- -.. .? - . - ",
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SIMI) ARCHITECTURE

"Single Instruction Multiple Data' parallel architecture.

SYSTOLIC ARRAY

A parallel architecture consisting of an ar-ray of processors with a

uniform protocol for passing data.
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c(x,y.z,t)

step 2: define f(x,yz,t) =(a+b-c)(+ab)

step 3: Display those values in x,y~z and t where f is infinite.

These may be curves, points or surfaces.

step 4: Generate Taylor's series cxpansijas with 2 terms for

11! along all the loc- where f is infinite.

step, 5: Compute a com.pl-e formula depending on f at a fine &:rid

of points in x-y-z-t space.

7. GLOSSARY.

CDR-COD[NG

A technique for eliminating unnecessary pointers in LISP lists.

GARBAGE COLLECTION

Th.- zutomatic reclamation of memory which is nct currently in use,

without explicit dereterencing by the programmer being required.

LISP

A uw:de!v-'-,scd programming language for symbolic computation.

NIIMD ARCHITECTURE

'Multiplc Instruction Mtitip'le Data' parallel architecture.

PROLOG

A widclv-used programnming language for symbolic computation.
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(3) The Reduce test file [Hea84].

(4) Macsyma test files

(5) Theorem proving examples

(6) PROLOG benchmarks in David Warren's thesis (available from Frank Kuo, SRI)

(7) OPS-5 rule sets

(8) Compilation timings (e.g. time LISP compiler compiling the Reduce system, the

blocks world)

(9) The SIGSAM problems (see the ACM SIGSAM Bulletins).

The following are statements of individual participants.

(1) Can we identify problems that need just a factor of two to five improvement to

bcccmc fcas;ble? Knowledge of such problems can help drive near-term development.

Some examples: getting expert systems to work in real time (e.g. DARPA's battlefield

manager must run at five times real time), increasing the subsets of English which natural

language systems can handle, and VLSI design.

(2) Good benchmarks provide a measure of performance that allows a comparison

c: -cn competing architectures. Benchmarks should be general in nature i.e. DAIS min

7 A ':-tstones. They should never be the only measure of performance.

Cz~sc s:udics of four to 1ive 'standard' symbolic problems, using state of the art

harcwarc, are needed.

(4, A benchmark for symbolic computing:

s:cp 1: Wri'c down 3 functions of variables x,yz,t

a(x,y.z.t) = ordinary but lengthy mathematical expression

b(x,yz.') =

...... . - ' • . .. . . . . .. . j
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(19) A typical computation application is szarching and pattcrn matching. A massively

parallel computer such as the Goodyear MPP would be very useful in speeding up these

basic operations. This implies that value-based systems will be able to select a rule in

parallel. There are some problems in doing this such as how lar,e should the 'associative' -

content-addressable memory be.

(20) In symbolic mathematics systems, one could picture the following basic operations

being hardware based to increase performance:

integer arithmctic
indefinite precision floating point arithmetic
rational number arithmetic

integer greatest common divisor
integer FFT with dynamic root of unity in a finite field

(21) Tags are artifacts of current implementations and not in::'zic to SC i ngulges - or

even to efficient implementations of them. The functicnality c,.' such things as full/empty

bits and dynamic typing are being provided in other systems by ether mechanisms. .2
(22) One participant's opinion: a 68000 plus infinite speed Eo,-in- point arithmetic will l

not produce much power.

6. PERFORMANCE EVALUATION.

The state of this important area is not advanced. We specifically request that funding

ag-ncies support bcnchmarking studies, for example, memo,-y usage statis:ics, or the

behavior of a CONS cell during its lifetime. "S

The following is the best list we could construct of current benchmark programs for

s,,mbolic computation:

(1) R. Gabriel LISP benchmarks

(2) M. Griss LISP benchmarks

.- . .-.-- .-i - .-.. .. -..-...... ',..".-'-."-..-....--.-...-.."...'.-...."..'.."..;"-."-"".,-.-,"-.'.
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(16) Can we do combined symbolic/numeric work best in LISP on a current commercial

supercomputer, or with a LISP machine aud such a supercomputer, or with a 68000 and a

supercomputer, or with a 68000 and a fast floatng point board?

(17) There are substantial classes of important problems which require enormous symbolic

computational power. The main characteristics of these problems are that they deal with

data structures and control structures which are unpredictable, and are thus not amen-

able to implementation on vector or array machines. The main source of computational

power for these problems must be parallelism, preferably with an architecture that

imposes as few constraints on the programmer as possible. The most flexible of these

architectures has been called a 'paracomputer' by Schwartz. This architecture is also

xel-suited to those numericai problems which lack the structure appropriate for pipe-

lined or vector implementation, so machines of this type are likely to be available in the

near future. The central question which arises, therefore, is that of the amount of paral-

lelism inherent in symbolic computations. At the present time there is little data on this,

though most participants (at the workshop) felt that many problems could yield to paral-

lel algorithms. However, there has been relatively little work done in this area; most

programming and algorithm design has been oriented towards serial architectures.

(18) There are arguments for both sides of the question of "personal supercomputer" vs

'backcnd supcrcomputcr. If the user has a desktop supercomputer with a decent

environment, would he/she be more productive? Quite possibly! On the other hand, back-

end machines will always have their place. Massive rule based c..>ert systems to solve

large problems will not go away. One possible arrangement would be to have a powerful

desktop machine for software development, and a backend machine for really tough

problems. One could also picture hardware assistance in compiler work, since massive

amounts of pattern matching are being done. A hardware pattern matcher would be

great.
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parallelism. Alternatives include data flow, use of pure functional programming, or intcl-

ligent analysis of existing (LISP) code to isolate independent (no side effect overlapping)

functions or sections of code.

(It should be noted that at least one participant strongly disagreed with the

assertion that SIMD is less useful than MIMD for symbolic computation, and in fact the

suggestion was made that SIMD machines could be competitive with other architectures

for such tasks as processing of rule-based languages).

(13) While pure functional has many mathematical attractions, the commonest implemen-

tation by combinators, and using normal order reduction is strongly non-parallel. Some

user action is required for multiple processor exploitation (see the work of Warren Bur-

ton at University of Cc!c::do). The intelligent compiler approach cescrves serious con-

sideration.

(14) Symbolic computaticz:s can contain a high degree of parallelism at the high-level

(conceptual, functional, "'%-orithmic), but much less at the instruction or operand level, in

what way can they be pe.cr.-med on, or with the assistance cf existing and future super-

computers? To use a veancr computer or pipelined computer (either on instructions or

data) seems to be of use c.ly on specialized subproblems mos:!. connected with numeri-

cal processing or table searching, etc.

(15) What sorts of parz!!nl architectures are useful? Single intruction machines are not

apropriate for the genacr.-i computation. NUMD machines, prc rbly with shared memo-y,

seem to be the most apprerate architectures. They can be pro;rammed at a high level,

yet take advantage of p:.-ilelism. It would seem best to have c system that allowed the

generation of several pr.":,ses each implementing a self-contained subtask, appropriately

scheduled. Existing vecv.-- machines might best be used as specialized co-processors for

floating point manipulatic_, or paticular algorithms, as might SI.MD machines.

, ° ' "°. " . *i" i ."*•.' " i~i .i°'°."' "" " ""- "° '."' "' :°, " ' '°',"-"*" "*%°" "','....."................". o. "..................... ".....° "
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(D) Hardware or generic arithmetic? The latter would take the form of branch

prediction-style hardware for numeric and maybe vector/array izrtructions.

(E) The Symbolics 3600's cphemeral object space may be a big win to help locality and

garbage collection. There should be hardware support for it.

(F) Process creation (i.e. given the code and local store that constitute a closure, create a

task and schedule it) has to be fast.

(G) Pipeline turbulence has to be handled. Either shorter pipes, or a Denelcor HEP-like

virtual multi-processor, could be useful for parallel LISP. The latter solves turbulence and

makes for a good machine for certain LISP constructs, e.g. QLAMBDA.

(H) Parallel languages have to encourage people to program in them effectively. They

must be high-level enough so that obvious algorithms/programs are easy to write.

(I) It is not clear what role is to be played by SIMD machines. They are clearly advanta-

geous in certain situations, e.g. as filtering devices on large searches. In such situations,

one can narrow down the choices, but not make the final ones.

(J) LISP could be 'adjusted' into a "mediumly-typed" language so that more inter-

procedural things could be done.

(11) We need to characterize the type of parallelism in symbolic programs/algorithms/

i a , ions in terms of granularity, volume and topology of com'nunication required

r::wecc concurrent cnti:ies. For example, there are indicatio.ns that unification might

g~vc on the order of tcn parallel search paths of medium [7anularity. Also, Gabriel

reported a study (at the workshop) that showed 100-150 fold parallelism on a MYCIN-

like systcm.

(12) In some pattern matching activity use can be made of S2.1,D style machines, but in

general to achieve the necessary high performance MIMD is rec':ired. This carries with it

probiems. Either we must rely on the user to write explicit kcnguage level constrictions

to unlock the power, or we must rely on some 'compilation' to determine available
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(5) Are systolic arrays useful? (example: integer greatest common divisor chip [Dav]).

(6) How does the need to support multiple users impact a system design?

. (7) Personal supercomputers vs. shared backend "crunchers'? Do we run our screcn edi.

tor on a supcrcomputer-class machine, or on a smaller support systcm? Is the right

environment a LISP machine networked to a massive symbolic processor in the back-

ground?

(8) Can symbolic computation languages take advantage of pipelines and vector opera-

tions? (Current supercomputer LISP implementations do not use the vector pipeline.)

(9) It may be time to give up the Von Neumann architecture in favor of a new execution

model, if we expect to achieve t.ruly large (radical?) improvements in performance on

symbolic problems. For example, it may be of advantage to employ a new control mechan-

* ism more adapted to symbolic calculations, e.g. replacc the prcgram counter with a

unification functional unit. There are a number of interesting new ideas in this area,

such as the OPS-5 machine, DADO, the FAIM machine of A. Davis at SRI, and the

NON-VON machine.

(10) Issues for faster symbolic processing:

(A) Architecture of words. Tags are essential for nearly all symolic languages. This adds

to memory costs (an 8-bit tag in addition to a 32-bit word is a good ratio).

(B) Architecture of the memory system in a parallel machine. (i) How is memory shared?

Is it true sharing? Is it mcssage-based on some network? (ii) Hov is cache coherence

done (if at all)? (iii) Lazy evaluation will play a key role in parallel symbolic languages.

It must be supported by full/empty bits or by the general tagging system, and also by syn-

chronization primitives.

(C) Some operations need to be faster, function-calling in particular. Don't make the

super-mini mistake of supporting the wrong function-call primitive.

-- -" .. .*. . . . . . . . . . . . . . . .. . . . . . . . . ....-." .*. . .7_ " l - *
"

.
'

: :.' :i
7 ' ' ' ' ' ' ' '



Workshop on Symbolic Computation and Supercomputers 15

another possible solution, used, for example, by the Goodyear MPP.

5. SYSTEM ARCHITECTUr.E.

The following are statements of individual participants.

(1) The five most important changes to get into the next commc.rcially produced super-

computer to affect symbolic computation languages are: tags, garbage collection support,

fast function calls, stacks, user-generic detatypes.

(2) One thing that can be done is to identify core capabilities and build plug-in hardware

modules for them ('augmentations' of systems). Some candidates:

- unification
- pattern matching
- bignum's (arbitrary precision integers)
- b:groa:s (arbitrary prccision floating point numbers)
- integer greatest common divisor
- integer FFT with dynamic primitive root of unity in finite field
- garbage collection

It is interesting to contrast this list with what the DARPA report ([AgeS3], p. 45-46) calls

the 'special components' of a symbolic processor:

- semantic memory
- signal to symbol transduction
- production rules
- fusion (permitting multiple sources of information to share knowledge)
- irfcrcncing
- search

(3) Suitability,'possibility of vcry powerful LISP machiz:s (1W2X the performance of a

current LISP machine for 2OX the price). It is noteworthy that the D.ARPA proposal

([Agc83], p. 45) states that an ultimate performance improvement of about SOX current

levels can be achieved for a uniprocessor LISP machine.

(4) Is massive parallelism (more than 1000 processors) useful in symbolic computation?

What is the right number of processors?

-. .. . ..-.. .. . . ,. .o .. ... . .. '. " . I -.:. : . . . ,, ,,. . . . . . . . -. .-.-.. , - ., ., . , •. , :



Workshop on Symbolic Computation and Supercomputers 14

(4) Virtual memory will always be needed, even in a single user environment (workspaces

can fill all of physical memory), but real memory is needed where high performance is the

issue.

(5) Must memory organization be completely redesigned to support heap allocation?

(6) The crucial architectural consideration which conventional supercomputcr design

ignores is memory. Symbolic computation is very memory intensive, and is (to a large

extent) dependent on garbage collection. Attempts by the PROLOG community to cir-

cumvent garbage collection have been less than successful. There are a number of things

which can be done in hardware to facilitate garbage collection, e.g. write-back caching,

short use count in the cache, and stack buffers. Concurrent cn-the-fly garbage collection

can be done with software. There are interesting ideas relating to 'trznsactional memory'

which necd more work.

(7) A hard issue is: on which side of the cache do we do garbage collection? This has

strong implications for multiple processors unless shared memory is feasible.

(8) Memory organization in the context of parallelism is unclear. It is not clear whether a

shared memory or local memories is better; perhaps a blend of the two is best. It is clear

that we want a 'uniform', shared address space to exist, where we can get at everything,

and each processor refes to a given item in the same way.

(9) C-rrcrt SC language implementations depend heavily c-, a 'uniform" shared address

space where we can get L.: everything and each processor can :fer to a given item in the

same way. It is clear that this makes implementation simplcr and cleaner. However,

some ex:sng parallel algorithms 'spend' up to half the proce.r 'power' reorganizing

memory, moving data around, making copies of data structures, etc. Parallel implemcnta-

tions of SC languages might assign several processors the task: of maintaining a 'virtual,

uniform address space' in a di-tributed memory architecture. Associative memory is
I.

--- - - ~ - .. . . . . . . .- - J
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(1) Hardware garbage collection (mot likely ways are with in'i,.'ble pointers and refer-

ence counts. Usually a hardware garbage collection can be cene in core.)

(2) Use of reference counts

(3) Parallel memory access

(4) Tagged architectures (note that use of tag bits is a property cf the implementation,

rather than of the language. Tagged archit-ctures do not necessarily make things

machine dependent. The Symbolics machines have given special attention to this

0 [ssue).

(5) Dispatching

(6) Associative memory/processing

(7) Generic functions (can't implement without runtime type check).

(8) Invisible pointers

(9) Cdr coding

(10) Take exceptions in hardware.

T- wc owing are statements of individual participants.

(1) Serious concern was expressed concerning architectural limitations of some current

machines, including some widely used super-minis, that have made implementation of an

SC !anguage unduly difficult. Specifically, in some cases, all bits of a 32-bit word are

used, the paging is wrong, and built-in function calling is bad.

(2) The usefulness of caches is unclear. Stack buffers work as well or better.

(3) What is the degree cf runtime typing required for symbc!ic computation? Is there

intrinsicaliy a sufficiently large amount of run time type dispatching to justify hardware

supot for tagging or is the use of tag dispatching sufficiently itnfrequent to allow it to

be done in-line with no substantial performance penalty?

•~~~~ ~ ~ ~~~~~~ - . ." '"2,- -- - ."'-
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Solution of partial differential equations, in particular, preprocessing for finite element

computations.

The following are statements of individual participants.

(1) Should there be an effort to interface LISP and FORTRAN? Vendors want to know

what priority this should be given. They need to know in order to decide what products

are warranted. Note that much of the IMSL library of numerical codes has been

translated (via program tra.-sformation) from FORTRAN to LISP for inclusion in the

.MACSYMA system. It is to be noted that support of scientific computation will, given

rcccnt developments, require support for parallel and vector computations.

(2) Most people grossly underestimate the amount of symbolic computing inherent in

scicntific computation. Even if this symbolic component were a small. fraction of the

total, the cost of classical "FORTRAN-like" computation will be or is so low with super-

computers that the cost of the symbolic component can become dominant in the problem

solving process. People can spend several days (full-time) to obtain by hand a symbolic

result that requires a few milliseconds if done at supercomputer speeds. Even using

MACSYMA on a VAX 11/780; it can require more effort and cost to obtain a 'simple"

symbolic intermediate result than is required to solve a scientific problem (using it) that

would take several hours of "number crunching'.

4. MEMORY.

The primary limits to the performance of a symbolic computation environment arc the

amount, speed, case of access to, and random access to, memory. W c would like to have

as much memory as possible, with as much of it physical and as litt!e of it virtu.I as possi-

ble.

The following are some memory featur-s to be considered as potential near-term

performance improvements. The number of us in favor of each one was variable.

,- . - 2 , . .. .. ".. . "
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computation community has not yet acknowledged the overriding need for software Por-

tability. We should be concerned about the tradeoff between the limitations needed for

language portability, and the thwarted creativity that may thereby result. It may be that

any of a number of 'modern' symbolic languages are perfectly adequate for the near and

intermediate future (4-10 years). The search for language perfection should not be

allowed to become a barrier to the main goal: to provide substantial symbolic facilities to

the broad spectrum of computer users, especially those in large-scale scientific computa-

tion.

(13) Can we get super-optimizing compilers combined with support for program rewriting

to adapt a program to a processor? This might allow a processor to exploit 'conventional

techniques' (e.g. vectors) to get parallelism and pe.rformance.

(14) We might like to have a compiler advise us on parallelism for applicative languages

like PROLOG. For more imperative languages like LISP, we might allow the program-

mer to specify parallelism.

3.3. Symbollc-numerlcal Interface.

We agree that symbolic computation languages should be able to support serious numeri-

cal computation. There should not be a barrier between the two types of computation in

a given environment. Some existing LISP compilers (e.g. MLACLISP) generate good code

for numerical computation, demonstrating that it is possible.

The following examples illustrate that both sorts of computing may be needed in the

same problem.

- Visual analysis of remote sensing data or electron microscopy slides by Bartels at the
University of Arizona and Goto at Tokyo University.
- Motion planning for robots by Moravec at Carnegie-Mellon University and Lozano-Peres
a: MIT.
- Solution of equations in artificial satellite thecry [Dep].
- Solution of transfer functions in optics [Got77).

.. "" ? " .' "'I" ., '.-, .Yu-. ,N ' ' . .+ _.__ " ~ . -" -.- ' ". " .- . - . .. .. " .- .- .
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show. great promise for transformation-based optimizations. Oher techniques such as

invariant analysis and specification will be important in the detection of parallelism in

symbolic applications.

(5) Automatic introduction of parallelism by the compiler is currently extremely difficult

(but see [MarSOl).

(6) While protecting the large investment in existing LISP code, care in language design

(e.g. first-class functions and continuations) can lead to improved algorithms. This is espe-

cially important in the convergence of LISP and PROLOG, which may be achieved using

con::nuations.

(7) Languages must support multiple levels of programming. We should be able to nor-

maiiy work at very high levels, but then become very machine specific when performance

is crucial.

(8) A language for symbolic computation should have a nice algebra (LISP doesn't, PRO-

LOG does). This is not only for aesthetic reasons, but to facilitate automatic program

transformation for more efficient implementation.

(9) Wha: optimizations may be used to provide first-class functional and control objects

efficiently when higher order functions are rarely used? (see e.g. [PadE3]).

(10) Despite the fact that the design of today's supercomputers has been guided by the

goal of largc-scale numerical computation, it is importan: to implement LISP and other

symbolic computation languages on them. Good performance on today's architect-res

can be achieved, and a lot is yet to be learned for the benefit of future architectures.

(11) What is the future of 'smart' compilation of symbolic computation languages vs. spe-

cial hardware for more 'interpretive' execution?

(12) A great deal of attention is being given to the diffecrnces in power, convenience, cc.

of 'LISP-like' programming languages; much more than is appropriate. The symbolic
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8. APPENDIX: MAILING ADDRESSES OF PARTICIPANTS.

John Aldag
Applications Department
Cray Research
1440 Northland Drive
Mendota Heights, Minnesota 55120

Wayne Anderson
Group C-10
Mail Stop B296
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Dennis Arnon
Computer Science Department
Purduc University
West Lafayctte, Indiana 47907

Bobby F. Caviness
University of Delaware
Department of Computer and Information Sciences
103 Smith Hall
Newark, Delaware 19716

Jagdish Chandra
Army Research Office
P.O. Box 12211
Research Triangle Park, North Carolina 27709

Elizabeth Cuthill
David Taylor Naval Sh:p Research and Development Center
Code 1805
Bethesda, Maryland 20084

Al,,in Despain
Univcrsity of California
Computer Science Division
Department of EECS
503 Evans Hail
Berkeley, California 94720

Robert Douglass
Group C-10
Mail Stop B296
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

John Fitch
School of Mathematics
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University of Bath
ENGLAND

Daniel Friedman
Ccmputer Science Department
Indiana University
Lindley Hall 101
Bloomington, Indiana 47405

Richard Gabriel
Computer Science Department
Stanford University
Stanford, California 94305

Jeffrey Greif
Inference Corporation
5300 W. Century Blvd.
Fifth Floor
Los Angeles, California 90045

Martin Griss
Computation Research Center
3U3
Hewlett-Packard
1501 Page Mill Road
Palo Alto, California 94304

Malcolm Harrison
New York University
251 Mercer Street
New York, New York 10012

Christopher Haynes
Computer Science Department
Indiana University
Lindley Hall 101
BEoomington, Indiana 47405

Robert Kessler
University of Utah
Department of Computer Science
3160 Merrill Engineering Building
Salt Lpke City, Utah 84112

Wayne Matson
Svmbolics, Inc.
243 Vassar Street
Cambridge, Massachusetts 02139

Donald Oxley
Texas Instruments
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P.O. Box 226015
Mail Station 238
Dalias, Texas 75266

John Rice
Computer Science Department
Purduc University
West Lafayette, Indiana 47907

John Smit
Goodyear Aerospace Corporation
D920/G3
1210 Masillon Road
Akron, Ohio 44315

William Stockwell
Control Data Corporation
HQW 10N
Post Office Box 0
Minneapolis, Minnesota 55440

Paul S. Wang
Kent State University
Department of Mathematical Sciences
Kent, Ohio 44242
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